Broken Triangles Revisited

نویسندگان

  • Martin C. Cooper
  • Aymeric Duchein
  • Guillaume Escamocher
چکیده

A broken triangle is a pattern of (in)compatibilities between assignments in a binary CSP (constraint satisfaction problem). In the absence of certain broken triangles, satisfiability-preserving domain reductions are possible via merging of domain values. We investigate the possibility of maximising the number of domain reduction operations by the choice of the order in which they are applied, as well as their interaction with arc consistency operations. It turns out that it is NP-hard to choose the best order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Broken Triangles and Enhanced Value-Merging

Broken triangles constitute an important concept not only for solving constraint satisfaction problems in polynomial time, but also for variable elimination or domain reduction by merging domain values. Specifically, for a given variable in a binary arc-consistent CSP, if no broken triangle occurs on any pair of values, then this variable can be eliminated while preserving satisfiability. More ...

متن کامل

Eppstein's bound on intersecting triangles revisited

Let S be a set of n points in the plane, and let T be a set of m triangles with vertices in S. Then there exists a point in the plane contained in Ω(m/(n log n)) triangles of T . Eppstein (1993) gave a proof of this claim, but there is a problem with his proof. Here we provide a correct proof by slightly modifying Eppstein’s argument.

متن کامل

Similar Triangles, Another Trace of the Golden Ratio

In this paper we investigate similar triangles which are not congruent but have two pair congruent sides. We show that greatest lower bound of values for similarity ratio of such triangles is golden ratio. For right triangles, we prove that the supremum of values for similarity ratio is the square root of the golden ratio.

متن کامل

Atomic-scale structure of GeSe2 glass revisited: a continuous or broken network of Ge-(Se(1/2))4 tetrahedra?

The atomic-scale structure of germanium diselenide (GeSe(2)) glass has been revisited using a combination of high-energy x-ray diffraction and constrained reverse Monte Carlo simulations. The study shows that the glass structure may be very well described in terms of a continuous network of corner- and edge-sharing Ge-Se(4) tetrahedra. The result is in contrast to other recent studies asserting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015